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E L A S T I C  F L U I D  B Y  A T H I N  N O N I S O T H E R M A L  J E T  
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Research into the subject of the aerodynamic drawing of melts has found application in the development of a technology 

for the aerodynamic forming of chemical fibers (AFF). In AFF, the drawing force is the aerodynamic frictional force between 

the fiber and air Far(X) generated by an ejector that creates a flow of air along the forming fiber. When used in the production 

of nonfabric materials from a melt, the method makes it possible to obtain fibers and the final product in a single step. The 

problem of fiber formation was first formulated in [1], while the theory of fiber formation was analyzed in [2, 3]. The authors 
of [4-6] examined some of the technical and physical aspects of AFF. The well-known mathematical models of AFF [7, 8] 

cannot be used for several reasons. First of all, the theoretical relation employed to characterize the aerodynamic force Far(X) 

along the path on which the fibers are formed in AFF [7] is not consistent with qualitative analyses made on the basis of 
empirical data on fiber and air velocities [4-6]. Secondly, use of the ratio from [7] to calculate Far(X ) leads to first-order 

discontinuities of the function Far(X) at points on the formation path where air and fiber velocity are equal. The discontinuities 

result in a sudden change in the sign and magnitude of the aerodynamic force at these points, which is inconsistent with 

representations of the continuity of the acting force. No relation was presented in [8] to calculate the aerodynamic force when 

an ejector is used in the drawing process. Also, no previous research has considered the choice of boundary conditions for the 
equation of motion. In AFF, the pulling force that is the main force determining the motion of the fluid is the force of 

interaction of the stream and the accompanying flow of air Far(X). Its magnitude depends on the velocity of the moving stream 

v(x), which is an unknown in the equation of motion. We thus encounter a problem in which the boundary condition depends 

on the solution of this equation. This makes it necessary to have an algorithm for selecting the correct boundary conditions to 
describe the motion of a stream of viscoelastic fluid. Below, we propose a mathematical model to describe the aerodynamic 

drawing of a thin stream of viscoelastic fluid. 

Basic Equations and Boundary Conditions. The balance of the forces acting on the stream as it moves has the form 

[1, 2] 

F , ( x )  = F,(O) + F ( x )  + F ( x )  + F~(x) - F , ( x ) ,  
(1) 

where 

F,h(x ) = p, S (2) 

is the rheological force; Pxx = /z(T) dv/dx is the tensile stress; S is the cross-sectional area of the stream; v is the velocity of 
the stream; #(T, dv/dx) is the viscosity of the polymer; 

F Cx) = "g ~o O~dx (3) 
0 

is the gravitational force; g is gravitational acceleration; P is the density of the polymer; D is the diameter of the stream; 

F ( x )  = = f sign(Au)p=Ddx (4) 
0 

Tver ' .  Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 35, No. 3, pp. 112-116, May-June, 
1994. Original article submitted June 15, 1993. 
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is the aerodynamic force; Pxs = 0.5cfo0 Av2 is the shear stress; cf = acRe-~ is the coefficient of aerodynamic friction; O0 is 

the density of the air; Av = v - -  u is the difference between the velocities of the stream v and air u; Re is the Reynolds 

number; a c and ~ are constants; 

F, = 7"(Do - D); (5) 

o is the coefficient of surface tension; D O is the diameter of the stream at x = O; 

F.  = C ( u -  u o) 

is the inertial force; v o is the initial velocity of the stream; 

(6) 

G = p vS  (7) 

is the continuity equation; G is the rate of flow of the polymer. 

The equation for the aerodynamic force (4) differs from that used in [1-3] in the presence of the function sign (Av), 

since this force is alternating in the given case. In contrast to [7], we put the function sign(Av) in the integrand in (4) to obtain 

qualitative agreement between the calculated value of Far(X) and the empirical data on stream and air velocities and ensure that 

the directions of change in these quantities in (4) are correct. 

In accordance with [9], we take the dependence of the viscosity of the polymer on temperature in the form 

l, = ~,oO-P, (8) 

where ~o is the viscosity at the initial temperature To; 13 > >  1; 0 = (T - -  T,)/(T o - -  T,); T,  is the glass point. 

Having differentiated Eq. (1) and having inserted (2-8) into the result, we obtain the equation of motion of the stream: 

- ~  -- (-e-~x + T O - 7". ~x  + too [A,, + A~t~ d"x 

- 0 a [A~,sign(v)Av~ 3-~ - As, ] = O. 

(9) 

Here 

a,,0 ] 
a."  7o) i t )  ; 

A~,=p/ /~o ;  At, =A-,,g; At  = ~ o  V G " 

In accordance with [1-3], the equation describing heat transfer between the stream and air has the form 

dT :taD 
"~x = - GC ( T - T ), 

(10) 
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where c~ = X0anRe~'/D is the heat-transfer coefficient calculated from the relation Nu = anReV [2]; X 0 is the thermal 

conductivity of air; C is the heat capacity of the polymer; T s is air temperature. 

System (9-10) is a mathematical model of the motion of the stream. Nonlinear system of ordinary differential equations 

(9-10) was solved by a fourth-order Runge--Kutta method with a constant step. 

The following values of process parameters were taken from [4-6] for numerical modeling: radius of the spinneret R ~ 

= 0.25 mm; flow rate G = 1 g/min; distance from the ejector to the spinneret x ~ = 30 cm. The properties of the 

polypropylene melt were taken mostly from [9]: ~0 = 291 kg/(m.sec), T O = 573 K, T, = 323 K, p = 800 kg/m 3, C = 2400 
J/(kg.K),/3 = 8.4. We used data from [10] for the air: density P0 = 1.29 kg/m 3, kinematic viscosity % = 1.4-10 -7 m2/sec, 

thermal conductivity X o = 0.04 W/(m.K). For Eq. (10), we took the constants a c = 0.9 and ~ = 0.4 from [2] and a n = 0.4 

and 3' = 0.3 from [6]. We chose the empirical functions from [4, 5] for the temperature Ts(X) and velocity u(x) of the air. 

Analysis of the Dynamics of  Motion. For the numerical modeling, we first determined the initial velocity from 

continuity equation (7) by means of the formula 

o(O) = 4G / (nD~op), (11) 

while the second boundary condition (gradient of velocity v'(0) at x = 0) was varied so that the "final" velocity v(L) changed 

from 25 to 200 m/sec. 

To analyze the dynamics of motion of the stream, we will present the results of calculations of the forces acting on 

the stream. These calculations were performed using Eqs. (2-6). Figure 1 shows the typical distribution of these forces along 

the formation path x(1 7 Frh, 2 - -  ( -Far) ,  3 - -  Fin ). The calculations indicated that surface tension and the gravitational force 

are no greater than 6 and 12 % of the maximum rheological force, respectively, which shows that they are small. Of the greatest 

interest is the behavior of  the aerodynamic force, since it is the main factor determining the motion of the stream. The 

dependence of this force on the coordinate x has two local extrema, their positions corresponding to the coordinates where the 

difference in the velocities of the stream and air Av changes sign. This occurs at x = 0.26 and 0.45 m, according to Fig. 2. 

In the Fig. 2, 1 represents v, 2 represents ( - A v ) ,  and 3 represents dv/dx. The change in the sign of the integrand in (4) 

corresponds to an extremum of the primitive of this function - -  which in the given case is the aerodynamic force. The change 

in the inertial force along the coordinate x is monotonic and agrees qualitatively with the graph of fiber velocity (Fig. 2). The 

behavior of the forces as coordinate functions agrees qualitatively with the experimental data presented in [1, 2]. 

It follows from the results of the modeling that with a "final" velocity v(L) > 50 m/sec, we can analyze the motion 

of the stream while ignoring the contribution of the gravitational force and surface tension. As a result, Eq. (1) takes the form 

F~Cx) = F~(0) + F.Cx) + ~(x) ;  (12) 

After differentiating (12), we obtain the approximate equation of motion of the stream: 

r~(x) = r l x  ) + ,%(x) (13) 

(the prime denotes differentiation with respect to x). This relation represents the balance of  the forces acting on an infinitesimal 

element of  stream length dx. 

Selection of  Boundary  Conditions. The numerical modeling allowed us to determine the qualitative dependence of 

the rheological force Frh(X) on the coordinate x, which is shown in Fig. 3 [curves 1-4 show the rheological force Frh(X) at 

vl '(0 ) > v2'(0) > v3'(0 ), where subscripts 1, 2, and 3 correspond to the numbers of  the curves and curve 5 shows the 

aerodynamic force Far(X)]. 

427 



D.IO 4, m 

o o,2 

\ 
0~4 Z, m 

Fig. 4 

F,K 

~ O  

460 

a6o 

The numerical modeling showed that Frh(X) always has a local maximum Frh(Xm) and a local minimum Frh(X0). At 

the beginning of the stream, Frh(X) is determined by the initial value Frh(0). There is then a local maximum Frh(Xm), 

which is necessarily followed by the local minimum Frh(X0). The point of the minimum Frh(X0) x = x o coincides with the point 

of the maximum Far(XO), where the conditions for the extrema of the aerodynamic and rheological forces Far'(X0) = 0 and 

Frh'(Xo) = 0 are satisfied. As a result of these conditions and Eq. (13), we find that Fin'(Xo) = 0. However, it is known from 

the relations for calculating forces which was presented in [2] that Fin'(X) = pv Frh(X)/~. It in turn follows from the last 

equation that the theological force at point x o is equal to zero: Frh(X 0) = 0. Inserting the last relation into (12), we obtain the 

following force balance at point x = x o 

F.s(0) = - IF=(Xo) + ~ ( x 0 )  I, 

With allowance for the formula used to calculate the rheological force Frh(X) = 7rR2/zv'(x), we can then use the expression 

just presented to determine the velocity gradient at the initial coordinate x = 0: 

u'(o) = - I r . ( X o )  + ~ ( x  0) I / ( = R ~ , ) .  (14) 

The value of x o is found from the equation/Xv = v(x) - -  u(x) = 0, since it follows from (4) that Far' is proportional to Av 

and that Far'(X O) = 0 at this point. 

Equation (14) makes it possible to take a set of functions Frh(X) (curves 1-3 in Fig. 3) obtained with different initial 

gradients v'(0) and choose the rheological force (curve 2 in Fig. 3) that corresponds to the motion of  the stream under the 

aerodynamic force alone. The other functions Frh(X ) (curves 1 and 3 in Fig. 3) correspond to cases in which the stream is also 

acted upon by an external tensile force. 

Based on the above analysis, it is recommended that the path of the stream [0, L] be broken up into two intervals along 

the coordinate. In calculating motion in the first interval [0, Xo], the second boundary condition is chosen numerically (by an 

iterative procedure) in accordance with Eqs. (11) and (14). The boundary conditions in the second interval [x O, L] are the final 

velocity in the first interval V(Xo) and the velocity gradient, which is equal to Zero at x o. Figure 3 (curve 4) shows the 
rheological force calculated by this approach. 

Numerical Modeling. The distributions of velocity, the longitudinal velocity gradient, and the diameter and temperature 

of the stream play the main roles in determining the structure of the polymer fibers [2, 3], so we used the proposed model to 

calculate these quantities. They were obtained by solving system (9-10). The results of  the calculations are shown in Figs. 2 

and 4. Lines 1-3 in Fig. 2 show the dependence of fiber velocity v, the difference between the velocities of  the air and fibers 

Av, and gradient of fiber velocity dv/dx on the coordinate x. Figure 4 shows the distribution of  stream diameter D and 

temperature T (lines 1 and 2) along x. For comparison, Figs. 2 and 4 show experimental data from [4-6]. Results calculated 

with the proposed mathematical model and the experimental data agree satisfactorily, which demonstrates the adequacy of the 
model. 

The chosen boundary conditions make it possible to calculate the parameters of the stream for different conditions of 
its motion. 
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